锂离子电池智能消防及其研究方法

锂离子电池是储能领域最具应用前景和市场价值的一类电化学器件,电池安全备受关注。研究电池热失控及智能消防对于提高储能系统安全性具有重要意义。本文对目前锂离子电池安全及智能消防方面的研究进行了梳理,现阶段的电池安全研究主要集中在本征安全、检测安全以及消防安全三个层面,但受限于该领域的研究起步较晚,依旧存在较多问题。我们结合锂离子电池安全研究现状,分析了电池热失控的过程及前后特点,指出了目前电池消防系统中存在的问题,并由此提出了电池智能消防系统的基本框架及其研究方法。通过将实际条件与实验条件结合分析,针对实验硬件和检测指标开展了讨论;重点聚焦研究平台中的电池燃烧载体的搭建与设计思路,并对热失控触发方式和喷淋系统的设计进行了总结与分析;同时提出了现有消防检测系统在锂电领域应用的局限性,详细介绍了锂离子电池智能消防中包括温度、电压、早期产气等重要预警指标的作用和其在研究中常用的采集及分析方式。

关键词 锂离子电池;热失控;储能;智能消防;测试方法

随着科技的发展以及人们对于新能源和储能技术需求的不断提高,各种新能源器件的开发也取得了巨大的进展。尤其是锂离子电池,由于其优异的电化学性能,已经广泛地应用于3 C(计算机类、通信类和消费类电子产品三者的统称)产品、新能源汽车以及储能系统,彻底改变了人们的生活方式。其中,锂离子电池在3 C产品领域的应用已经较为成熟,在新能源汽车和储能系统领域的应用前景巨大。锂离子电池目前正处于高速发展阶段,其本身的性能随着实际应用需求继续提升,安全问题是制约其发展的重要因素。电池事故的频发,对其在新能源汽车及大规模储能领域的应用造成了巨大的影响,如何提高锂离子电池安全性是亟待解决的问题,电池的智能消防因而显得尤为重要。

1 锂离子电池安全管理的研究概况

目前针对锂离子电池安全问题,主要开展以下几个方面的研究:①提高锂离子电池本身的稳定性,降低其热失控风险;②设计锂离子电池安全智能监测系统,及早对热失控风险进行预警和干预;③针对锂离子电池燃烧特点,研发高效的专用灭火剂。

如何提高锂离子电池热稳定性是目前电池安全管理的主要关注点。电池安全是一个系统工程,不仅取决于电池材料的本征安全,而且还和电池设计与制备、电池系统与管理以及电池的使用等密切相关。针对电池材料的本征安全已有大量工作报道,例如,Zhang等通过用低聚环氧乙烷取代的氟硅烷化合物对锂离子电解液进行改性,提高了电解液的稳定性与安全性;Liu等则通过提高电解液中的盐浓度,提高了锂金属电池的热稳定性;Jiang等通过在隔膜上构建氧化铝的微观框架结构,有效提高了隔膜的热稳定性以及与电解质亲和能力,从而提高了锂离子电池的安全性。然而,从电池材料本身着手解决安全性的方案难度较大,且受限于市场上电池标准工艺和生产成本等问题,目前尚未彻底解决锂离子电池的安全隐患,电池用户依然面临热失控的风险。

给锂离子电池配置监测系统是目前较为常见的提高其可靠性的手段。通过在锂离子电池周围或者内部安置监测元件,并结合预先设置的算法对采集的数据进行分析,可以有效监控锂离子电池的工作状态,及早发现异常情况。尽管已经存在多种监测方案,但是目前的方案依然有待于进一步完善,如何对具有热失控风险的电池进行更早、更精准辨别,依然是研究人员们亟需解决的难题。在锂离子电池的实际应用中,这种监测方案对电池老化或缓慢热累积导致热失控等健康演变比较有效,但若电池出现碰撞、针刺或短路等快速猛烈的外界干预时,目前的监测系统难以有效阻止电池进入燃烧乃至爆炸的极端情况。在这种情况下,就需要对电池进行有效灭火,减少用户财产损失,保障人身安全。

近年来电动汽车和储能电站的火灾事故频发,锂离子电池的安全问题已引起人们高度关注。锂离子电池的燃烧具有多类火灾的燃烧特点,且易复燃易爆炸,目前尚没有完善的消防方案以及专用的灭火剂,有大量研究针对锂离子电池的火灾消防进行展开。王铭民等针对不同灭火剂对磷酸铁锂电池燃烧的灭火效果开展了研究,结合锂离子电池特点,对灭火剂降温效果进行了分析,论证了降温在电池火灾的扑灭中具有重要意义。Rao等采用二氧化碳灭火剂、七氟丙烷灭火剂以及干粉灭火剂对100 Ah的动力电池的燃烧进行了扑灭,并对三种灭火剂的灭火效果进行了研究,发现在这三类灭火剂中,七氟丙烷有较好的灭火效果。尽管在该领域的研究取得了一定的进展,但由于起步较晚,目前依然处于摸索阶段,同时缺少成熟的统一标准,这也阻碍了进一步发展。另一方面,不同于传统的火灾,锂离子电池体系复杂,具有多种可燃物的类型,且表现出异常复杂的燃烧特点,对灭火要求较为苛刻,采用传统灭火剂的灭火效果非常有限。如CO2、干粉灭火剂对电路相对友好,但难以起到降温作用,无法阻止锂离子电池复燃;七氟丙烷、全氟己酮灭火剂在电路友好的基础上具有更好的降温效果,但当锂离子电池火灾规模较大时效果较差,复燃依旧会发生,并且成本高昂,不利于大规模运用;水基灭火剂尽管成本较低,且降温效果良好,但对电路有一定的损害。同时锂离子电池本身燃烧烈度强,现有灭火剂无法在短时间内完成灭火工作。

总体而言,目前锂离子电池消防依然依托于传统消防,以储能电站为例,其消防系统主要采用常规烟感和温感作为检测手段,在锂离子电池出现明火的阶段可以发挥一定的作用,起到及时警示及抑制火势的作用。现阶段的锂离子电池消防的相关标准和设计也都是基于传统消防所展开,在预警和限制火情发展方面具有一定实用价值,但效率较低,难以满足未来锂离子电池规模进一步扩大后的消防需求。因此,深入了解锂离子电池的燃烧机理,设计专门的安全管理系统是锂离子电池消防的核心问题。

综上所述,在提高锂离子电池本身可靠性的同时建立高效精确的监测系统,并根据锂离子电池特点设计特种灭火剂及消防方案,可以有效降低锂离子电池热失控可能带来的风险。为了实现这个目标,首先要对锂离子电池的燃烧特点进行充分的分析和研究。

2 锂离子电池燃烧特点

根据国家标准《火灾分类》的规定,人们将传统火灾分为ABCDEF六大类,分别对应:固体物质火灾、液体或可熔化的固体物质火灾、气体火灾、金属火灾、带电火灾以及烹饪器具内的烹饪物(如动植物油脂)火灾。目前商业化的灭火剂及灭火系统也基本上按照此标准进行设计。在研究锂离子电池火灾时,人们发现不能简单将锂离子电池的火灾归于上述任何一种类型。锂离子电池在燃烧过程中兼具ABCDE五种火灾类型的特点,这就导致其燃烧过程十分复杂,控制的难度也远超传统火灾。除此之外,电池内部含有大量固、液、气等易燃物质,导致其火灾的激烈程度也远高于一般的火灾,并具有爆炸的风险。为了更有效地对锂离子电池火灾进行消防,研究人员们对其燃烧机理及特点进行了深入地研究。

锂离子电池的燃烧主要是由热失控引起的,能够诱热失控的因素有很多,包括撞击、穿刺、过热、短路等,通常将此类情况统称为热滥用触发热失控。当电池进入热失控状态后,在无外界干预的情况下这个过程是不可逆转的,其内部温度会持续升高,导致电解质和电极材料受热分解,产生易燃、有害的气体,进一步加剧电池内部的各种物理及化学反应,直至出现燃烧甚至爆炸的情况。

锂离子电池火灾通常分成三个阶段,分别为外力作用下的热失控、泄气以及燃烧爆炸。其中,泄气阶段会伴随着可燃气体和可燃颗粒的产生,这样会加剧锂离子电池的燃烧,对灭火造成严重的阻碍。这就使得锂离子电池火灾具有多次射流火特点,火灾中心温度达到1000度以上且极易复燃。

为了更深入地研究锂离子电池热失控情况,研究人员在这三个阶段的基础上进一步细化,对电池热失控的全过程进行了更细致的划分。当电池温度仅处于60~80 ℃时,轻微的产气行为就已经开始发生,当温度达到90 ℃时,固态电解质界面膜SEI(solid electrolyte interphase)发生重构。当温度进一步提高到100~140 ℃,SEI膜结构开始被破坏,发生分解反应。在此阶段,由于SEI膜被破坏导致Li负极与电解质发生直接接触,在高温情况下会产生乙烯和乙烷等可燃性气体,进一步破坏电极结构,加剧副反应,反应方程式如下

在此温度下,电解质中的盐还会发生热解与水解,生成PF5、POF3、CH3F和HF等有毒害气体,反应如下

当温度继续升高到130~180 ℃区间时,隔膜融化,电池将出现内短路,产生大量的焦耳热,此时电池自发产热,进入热失控状态。值得注意的是,此时电池内部产生热量以及产生的速率与电池荷电状态(state of charge,SOC)成正相关。当温度达到200 ℃以上时,正极材料开始发生剧烈的分解反应,产生大量的热并释放出氧气,这些氧气还将和电解质发生如下反应,进一步放出大量的热。

其中产生的水又可以参与到生成HF的反应中,使得情况进一步恶化。当锂离子电池内部热量及电池材料分解产生的气体积蓄到一定程度时,电池进入泄气阶段。大量易燃气体伴随着残余的电解液和颗粒物质冲破电池壳体进入电池周围的空间。这些泄露到外部的物质一旦遇到诸如电火花之类的火源,就会被迅速点燃,进入猛烈燃烧的阶段,在特定情况下这样的燃烧甚至会演变为剧烈的爆炸,具有极高的危险性。上述锂离子电池的燃烧过程并不绝对,并非每一次火灾都要经历以上全部过程。当电池体系(电极材料、电解质成分以及工艺等)出现变化的时候,燃烧方式和燃烧过程也会因此改变。但火灾发生的整体趋势是基本确定的,故针对锂离子电池燃烧发生过程中的各个阶段进行分析研究,将有利于人们掌握其热失控前后的变化规律,为电池专用智能消防体系的搭建提供理论依据,提高消防效率。

3 锂离子电池消防研究及策略

锂离子电池的热失控及消防研究有较大的难度,为了开展相关研究,人为通过触发电池使之进入热失控状态并收集其在整个过程中的数据是十分有必要的。然而,锂离子电池的燃烧十分危险,特别是燃烧时呈现多次流射火,并伴随爆炸的风险,这使得研究人员进行试验以及采集数据方面会有较大的困难。同时,不同于传统消防安全问题,锂离子电池火灾在进入燃烧阶段前存在一个较长的演变过程,如果可以通过技术手段捕捉相关信号,将有助于消防系统在更早的阶段介入,阻止情况进一步恶化,所以对电池热失控前后状态的研究在储能安全方面能起到决定性的作用。因此,传统消防中以消为主的防控思路在锂离子电池消防中并不适用,目前在储能电站中使用的监测系统依旧是以传统消防思路安置的烟感、温感探头,对火情的检测具有严重的滞后性,往往要等到电池已经进入热失控阶段并大量产热时才能开始干预。此外,目前消防中常用的灭火方式在应对锂离子电池火灾时并不理想。如何在锂离子电池起火后高效地扑灭明火、快速降温也是锂电储能安全领域必须要攻克的难题。因而在研究中,除了需要记录电池非正常工作状态下的信号变化,对灭火剂的研发和灭火技术的改进同样是不可忽视的方向。

3.1 电池燃烧箱体设计

在锂离子电池热失控及燃烧的研究中,人们通常会引入特制箱体作为实验开展的载具,该设计不仅可以阻止电池燃烧时产生的火焰以及爆炸对周围环境和人员造成威胁,而且在一定程度上可模拟电池实际工况,提高数据的可靠性。通常箱体设计有两个模式,一种是封闭式,如图1所示,封闭式箱体设计对附近的研究人员具有更高的保护能力,同时由于燃烧产生的物质和热量难以扩散到外界环境,研究电池热失控的产气、产热等行为具有更高的可靠性;另一种模式是开放式,如图2所示,为了避免电池爆炸产生的碎屑等内容物溅射对研究人员造成伤害,需安装防护网等进行遮挡。尽管开放式箱体在设计上具有相对较高的自由度,但需要具备搭载研究中必要的元件,如引燃设备、各类数据监测设备等。

图1   封闭式锂离子电池测试防爆箱示意图

图2   开放式锂离子电池燃烧箱示意图

虽然封闭式的箱体设计可以使测试收集的参数更为准确,且对设备放置的场地要求较低,但由于燃烧时在箱体内容易积攒大量的可燃气体,一旦这些气体在爆炸极限的范围内被引燃,产生的爆炸威力十分惊人,容易引发危险事故。所以这种封闭式的箱体设计通常用于较小容量的电池热失控、燃烧及消防测试。由于箱体需要承受较大的冲击力,因此箱体设计应考虑其是否具有足够的耐压性。Larsson等采用封闭式箱体对锂离子电池加热中的气体爆炸及热失控情况进行了研究,利用该设备他们得到了不同老化程度的电池在受热条件下的气体产生和爆炸情况,该设备具有承受爆炸的能力,且搭载了相应的温度及气体传感器。

开放型箱体设计可以实现气体与外界环境的自由交换,爆炸对箱体的冲击较小,对箱体的抗冲击能力要求较低,故这类箱体适用于较大容量的锂离子电池的热失控、燃烧及消防测试,且制造成本相对较低。然而,由于箱体的开放式设计存在内外气体对流,被测电池的温度容易受外界影响,且燃烧产生的气体也更容易逃逸到外界。这些情况导致在数据监控方面的可靠性较低。同时,开放式的箱体无法将火焰以及有害气体局限于箱体内部,对于实验场所的要求较高,一般要求在空旷的室外场所或者专门配备了烟火消除装置的大型室内消防基地开展实验。Luo等采用开放式箱体设计进行了锂离子电池燃烧的消防试验,箱体为简易的铁皮焊制,可以防止电池可能出现的爆炸对实验人员造成危害,但内外部气体的自由交换不会受到影响。他们在开放式箱体中引燃了容量高达80安时的电池,并验证了不同灭火剂对于锂离子电池燃烧的扑灭能力。

为了结合上述两种箱体设计的优势研究人员将常规的测试箱体设计为舱体,大幅度增加了测试箱内部腔体的空间,如图3所示,将一个舱体作为电池的燃烧空间,并具备收集舱内气体的能力,同时舱门通常会做可视化设计,便于研究人员观察舱体内部电池的燃烧情况。这种舱体具有较大的内部空间,可以大幅削弱锂离子电池爆炸对舱壁面的冲击,在大容量电池的测试中同样适用。由于舱体内部和外界空间相对隔绝,不存在内外部气体对流的情况,收集到的电池热失控及消防数据也更为准确。Liu等采用了这种舱式箱研究了243 Ah磷酸铁锂电池热失控过程中的产气行为,对大型锂离子电池有害气体的产生以及热失控过程的阶段进行了分析。然而,由于此套设备内部空间大,对于一些微量物质的监测精度较低。另外,舱体设计的设备成本较高,体积大不便于移动,通常要求放置于空旷的厂房内使用,而且箱体搭建和维护的成本也会高于前两种常规的箱体设计。如何根据实际的实验需求选取最为合适的箱体设计是开展相关研究工作需要首先考虑的问题。除此之外,直接采用实际运用中的完整电池包作为测试对象同样是可行的方案,但由于其高昂的成本和更高的危险性,一般选择在研究成果后期的验证阶段采用此种模式。

上一篇:直流屏如何更换有故障的蓄电池
下一篇:缺陷电池研究新突破